Publications There is no greater agony than bearing an untold story inside you
-Maya Angelou
since joining asu
Book Chapters:[2] C.M. Hamm, and C.S. Birkel. MAX Phases and MXenes, in Inorganic Materials Chemistry; Seshadri, R.; Cussen, S.; in Comprehensive Inorganic Chemistry III; Reedijk, J., Poeppelmeier, K. R., Eds.;, Vol. 5, pp 278-289. Oxford: Elsevier, 2023
DOI: 10.1016/B978-0-12-823144-9.00076-5[1] C.S. Birkel. Synthesis of inorganic energy materials, in Frontiers of Science and Technology, De Gruyter 2021
DOI: 10.1515/9783110584455-010
Journal Articles and Reviews:
[55] J. Jamboretz, and C.S. Birkel, Raman Thermometry for Temperature Assessment of Inorganic Transformations During Microwave Heating, J. Raman Spectr. 2024, accepted, DOI: 10.1002/jrs.6743
[54] J. Jamboretz, Y. Zhu, R. James*, L. Mu, and C.S. Birkel, The microwave-assisted synthesis of P2 and O3 type NaxCoO2 cathode materials studied by in situ Raman spectroscopy, Chem. Mater. 2024, 36, 16, 8447-8457, DOI: 10.1021/acs.chemmater.4c01551
[53] J. Sinclair, J.P. Siebert, M. Flores*, D. Ciota, D.-K. Seo, and C.S. Birkel, High surface area of carbonaceous Cr2GaC composite microspheres synthesized by sol–gel chemistry, New J. Chem. 2024, 48, 11122-11128, DOI: 10.1039/D4NJ02038C
[52] J. Sinclair, M. Flores, A.M. Brugh, T. Rajh, M. Juelsholt, A.A. Riaz, C. Schlüter, A. Regoutz, and C.S. Birkel, In-Depth Analysis of the Species and Transformations during Sol Gel-Assisted V2PC Synthesis, Inorg. Chem. 2024, 63, 23, 10682–10690, DOI: 10.1021/acs.inorgchem.4c01160
[51] N. Kubitza, I. Huck, H. Pazniak, C. Kalha, D. Koch, B. Zhao, P.K. Thakur, T.-L. Lee, A.A. Riaz, W. Donner, H. Zhang, B. Moss, U. Wiedwald, A. Regoutz, and C.S. Birkel, Between carbide and nitride MAX phases: sol–gel assisted synthesis and characterization of the carbonitride phase Cr2GaC1−xNx, J. Mater. Chem. C, 2024, 12, 7552-7561, DOI: 10.1039/D4TC00067F
[50] C. Büchner, N. Kubitza, A.M. Malik, J. Jamboretz, A.A. Riaz, Y. Zhu, C. Schlüter, M.R. McCartney, D.J. Smith, A. Regoutz, J. Rohrer, and C.S. Birkel. Chemical Conversions within the Mo–Ga–C System: Layered Solids with Variable Ga Content, Inorg. Chem. 2024, 63, 17, 7725–7734. DOI: 10.1021/acs.inorgchem.4c00107
[49] N. Kubitza, B. Beckmann, S. Jankovic*, K. Skokov, A.A. Riaz, C. Schlüter, A. Regoutz, O. Gutfleisch, and C.S. Birkel. Exploring the Potential of Nitride and Carbonitride MAX Phases: Synthesis, Magnetic and Electrical Transport Properties of V2GeC, V2GeC0.5N0.5, and V2GeN, Chem. Mater. 2024, 36, 3, 1375–1384, DOI: 10.1021/acs.chemmater.3c02510
[48] N. Kubitza, P. Babaei*, U. Wiedwald, and C.S. Birkel. Rapid Sol Gel Synthesis Approach for the Preparation of the Magnetocaloric Antiperovskite Mn3GaC, Chem. Mater. 2023, 35, 21, 9175–9181, DOI: 10.1021/acs.chemmater.3c01905
[47] N. Kubitza, C. Büchner, J. Sinclair, R. Snyder, and C.S. Birkel. Extending the Chemistry of Layered Solids and Nanosheets: Chemistry and Structure of MAX Phases, MAB Phases and MXenes, ChemPlusChem 2023, 8, e202300214, DOI: 10.1002/cplu.202300214
[46] R.M. Snyder, M. Juelsholt, C. Kalha, J. Holm, E. Mansfield, T.-L. Lee, P.K. Thakur, A.A. Riaz, B. Moss, A. Regoutz, and C.S. Birkel. Detailed Analysis of the Synthesis and Structure of MAX Phase (Mo0.75V0.25)5AlC4 and Its MXene Sibling (Mo0.75V0.25)5C4, ACS Nano 2023 17, 13, 12693 - 12705, DOI: 10.1021/acsnano.3c03395
[45] N. Kubitza, R. Xie, I. Tarasov, C. Shen, H. Zhang, U. Wiedwald, and C.S. Birkel. Microwave-assisted synthesis of the new solid-solution (V1−xCrx)2GaC (0 < x < 1), a Pauli paramagnet almost matching the Stoner criterion for x = 0.80, Chem. Mater. 2023 35, 4427–4434, DOI: 10.1021/acs.chemmater.3c00591
[44] A. Reitz, H. Pazniak, C. Shen, H.K. Singh, J. Kumar, N. Kubitza, A. Navrotsky, H. Zhang, U. Wiedwald, and C.S. Birkel. Cr3GeN: A Nitride with Orthorhombic Antiperovskite Structure Chem. Mater. 2022 34, 10304 - 10310, DOI: 10.1021/acs.chemmater.2c01524
[43] J. Jamboretz, A. Reitz, and C.S. Birkel. Development of a Raman spectroscopy system for in situ monitoring of microwave-assisted inorganic transformations J. Raman Spectr. 2022 1 - 9, DOI: 10.1002/jrs.6478
[42] J. Sinclair, J.P. Siebert, M. Juelsholt, S. Chen, H. Zhang, and C.S. Birkel. Sol Gel-Based Synthesis of the Phosphorus-Containing MAX Phase V2PC Inorg. Chem. 2022 61, 16976 - 16980, DOI: 10.1021/acs.inorgchem.2c02880
[41] N. Kubitza, A. Reitz,A. Zieschang, H. Pazniak, B. Albert, C. Kalha, C. Schlüter, A. Regoutz, U. Wiedwald, and C.S. Birkel. From MAX phase carbides to nitrides: Synthesis of V2GaC, V2GaN and the carbonitride V2GaC1−xNx, Inorg. Chem. 2022 61, 10634 - 10641, DOI: 10.1021/acs.inorgchem.2c00200
[40] J.P. Siebert, M. Juelsholt, D. Günzing, H. Wende, K. Ollefs, and C.S. Birkel. Towards a mechanistic understanding of the sol-gel syntheses of ternary carbides, Inorg. Chem. Front 2022 9, 1565 - 1574, DOI: 10.1039/D2QI00053A
[39] J.P. Siebert, K. Patakarun*, and C.S. Birkel. Mechanistic Insights into the Nonconventional Sol-Gel Synthesis of MAX Phase M2GeC (M = V, Cr), Inorg. Chem. 2022 61, 3, 1603 - 1610, DOI: 10.1021/acs.inorgchem.1c03415
[38] J.P. Siebert, D. Hajra, S. Tongay, and C.S. Birkel. The synthesis and electrical transport properties of carbon/Cr2GaC MAX phase composite microwires, Nanoscale 2022 14, 744-751, DOI: 10.1039/D1NR06780J
[37] J.P. Siebert, M. Flores*, and C.S. Birkel. Shape Control of MAX Phases by Biopolymer Sol Gel Synthesis: Cr2GaC Thick Films, Microspheres, and Hollow Microspheres, ACS Org. Inorg. Au (invited) 2021 2, 59 - 65, DOI: 10.1021/acsorginorgau.1c00022
[36] J.P. Siebert, S. Mallett*, M. Juelsholt, H. Pazniak, U. Wiedwald, K. Page, and C.S. Birkel. Local structure determination and magnetic properties of the Mn-doped MAX phase Cr2GaC, Mater. Chem. Front. 2021 5, 6082-6, DOI: 10.1039/D1QM00454A
[35] M.H. Tran, A.M. Malik, M.T. Duerrschnabel, A. Regoutz, P.K. Thakur, T.-L. Lee, D. Perera, L. Molina-Luna, K. Albe, J. Rohrer, and C.S. Birkel. Experimental and theoretical investigation of the chemical exfoliation of Cr-based MAX phase particles, Dalton Trans. 2020 49, 12215-12221, DOI: 10.1039/D0DT01448F
[34] M.H. Tran, R. Brilmayer, L. Liu, H. Zhuang, C. Hess, A. Andrieu-Brunsen, and C.S. Birkel. Synthesis of a Smart Hybrid MXene with Switchable Conductivity for Temperature Sensing, ACS Appl. Nano Mater. 2020 3, 4069-4076, DOI: 10.1021/acsanm.0c00118
[33] J.P. Siebert, C.M. Hamm, and C.S. Birkel. Microwave heating and spark plasma sintering as non-conventional synthesis methods to access thermoelectric and magnetic materials, Appl. Phys. Rev. 2019 6, DOI: 10.1063/1.5121442
[32] .P. Siebert, L. Bischoff, M. Lepple, A. Zintler, L. Molina-Luna, U. Wiedwald, and C.S. Birkel. Sol-gel based synthesis and enhanced facile processability of MAX phase Cr2GaC, J. Mater. Chem. C 2019 7, 6034-6040, DOI: 10.1039/C9TC01416K
Prior to asu, publications as pi
[31] M.H. Tran, T. Schäfer*, A. Shahraei, M. Dürrschnabel, L. Molina-Luna, U.I. Kramm, and C.S. Birkel. Adding a new member to the MXene family: Synthesis, structure and electrocatalytic activity for the Hydrogen Evolution Reaction of V4C3Tx, ACS Appl. Energy Mater., 2018 1, 3908-3914, DOI: doi.org/10.1021/acsaem.8b00652
[30] C.S. Birkel, W.G. Zeier, T. Lunkenbein, V. Hlukhyy. Trendberichte Festkörperchemie 2017, Nachrichten aus der Chemie, 2018 66, 240-248, DOI: doi.org/10.1002/nadc.20184071885
[29] C.M. Hamm, M. Dürrschnabel, L. Molina-Luna, R. Salikhov, D. Spoddig, M. Farle, U. Wiedwald, and C.S. Birkel. Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC, Mater. Chem. Front., 2018 2, 483-490, DOI: doi.org/10.1039/C7QM00488E
[28] JC.M. Hamm, J.D. Bocarsly, G. Seward, U.I. Kramm, and C.S. Birkel. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC, J. Mater. Chem. C, 2017 5, 5700-5708 (Emerging Investigator Issue) DOI: doi.org/10.1039/C7TC00112F
[27] C.M. Hamm, L. Diop, H. Zhang, O. Gutfleisch, and C.S. Birkel. Microwave synthesis and magnetic properties of Laves-type Ti2M3Si (M = Mn, Fe, Co, Ni), Phys. Status Solidi C, 2017 14, 1700027, DOI: doi.org/10.1002/pssc.201700027
[26] C.M. Hamm, T. Schäfer*, H. Zhang, and C.S. Birkel. Non-conventional synthesis of the 413 MAX phase V4AlC3, ZAAC 2016 642, 1397-1401, DOI: doi.org/10.1002/zaac.201600370
[25] C.M. Hamm, D. Gölden, E. Hildebrandt, J. Weischenberg, H. Zhang, L. Alff, and C.S. Birkel. Magnetic properties of the Laves-type phases Ti2Co3Si and Ti2Fe3Si and their solid solution, J. Mater. Chem. C 2016 26, 2755-2761, DOI: doi.org/10.1039/C6TC02043G
Prior to asu, publications as lead and coauthor
[24] L. Bischoff, M. Stephan, C.S. Birkel, C. Litterscheid, A. Dreizler, and B. Albert. Multiscale and luminescent, hollow microspheres for gas phase thermometry, Sci. Rep. 2018 8, 608, DOI: doi.org/10.1038/s41598-017-18942-2
[23] G. Kieslich, U. Burkhardt, C.S. Birkel, I. Veremchuk, J.E. Douglas, M.W. Gaultois, I. Lieberwirth, R. Seshadri, G.D. Stucky, Y. Grin, and W. Tremel. Enhanced thermoelectric properties of the n-type Magneli phase WO2.90: reduced thermal conductivity through microstructure engineering, J. Mater. Chem. A 2014 2, 13492-13497, DOI: doi.org/10.1039/C4TA01395F
[22] T. Claudio, D. Bessas, C.S. Birkel, G. Kieslich, M. Panthöfer, I. Sergueev, W. Tremel, R.P. Hermann, Enhanced Debye level in nano Zn1+xSb, FeSb2 and NiSb: nuclear inelastic spectroscopy on 121Sb, Phys. Status Solidi B 2014, 251, 919-921 (Editor’s choice), DOI: doi.org/10.1002/pssb.201350246
[21] Y. Zhang, J.-H. Bahk, J. Lee, C.S. Birkel, M.L. Snedaker, D. Liu, H. Zeng, M. Moskovits, A. Shakouri, G.D. Stucky. Hot Carrier Filtering in Solution Processed Heterostructures: a Paradigm for Improving Thermoelectric Efficiency, Adv. Mater., 2014 26, 2755-2761 DOI: doi.org/10.1002/adma.201304419
[20] J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M-S Miao, G.D. Stucky, T.M. Pollock, R. Seshadri. Phase stability and property evolution of biphasic Ti-Ni-Sn alloys for use in thermoelectric applications, J. Appl. Phys. 2014 115, 043720, DOI: doi.org/10.1063/1.4862955
[19] G. Kieslich, C.S. Birkel, I. Vermenchuk, Y. Grin, W. Tremel. Thermoelectric properties of spark-plasma sintered nanoparticular FeSb2 prepared via a solution chemistry approach, Dalton Trans. 2014 43, 558 – 562, DOI: doi.org/10.1039/C3DT51535D
[18] C.S. Birkel, M.L. Snedaker, Y. Zhang, H. Wang, T. Day, Y. Shi, X. Ji, S. Krämer, C.E. Mills*, A. Moosazadeh, Moscoskovits, G.J. Snyder, and G.D. Stucky. Silicon-based thermoelectrics made from a boron-doped silicon dioxide nanocomposite, Chem. Mater. 2013 25, 4867 – 4873, DOI: doi.org/10.1021/cm401990c
[17] C.S. Birkel, J.E. Douglas, B.R. Lettiere*, G. Seward, Y. Zhang, T.M. Pollock, R. Seshadri, G.D. Stucky. Influence of Ni nanoparticle addition and spark plasma sintering on the TiNiSn-Ni system: Structure, microstructure, and thermoelectric properties, Solid State Sci. 2013 26, 16 – 22, DOI: doi.org/10.1016/j.solidstatesciences.2013.09.005
[16] G. Kieslich, C.S. Birkel, J.E. Douglas, M. Gaultois, I. Vermenchuk, R.Seshadri, G.D. Stucky, Y. Grin, W. Tremel. SPS-assisted preparation of the Magneli phase WO2.90 for thermoelectric applications, J. Mater. Chem. A 2013 1, 13050 – 13054, DOI: doi.org/10.1039/C3TA12145C
[15] G. Kieslich, I. Veremchuk, I. Antonyshyn, W.G. Zeier, C.S. Birkel, K. Weldert, C.P. Heinrich, E. Visnow, M. Panthöfer, U. Burkhardt, Y. Grin, W. Tremel. Using Crystallographic Shear to Reduce Lattice Thermal Conductivity: High Temperature Thermoelectric Characterization of the Spark Plasma Sintered Magneli Phases WO2.90 and WO2.722, Phys. Chem. Chem. Phys. 2013 15, 15399 – 15403, DOI: doi.org/10.1039/C3CP52361F
[14] C.S. Birkel, J.E. Douglas, B.R. Lettiere*, G. Seward, Y. Zhang, T.M. Pollock, R. Seshadri, and G.D. Stucky. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: Microwave preparation and Spark Plasma Sintering of TiNi1+xSn, Phys. Chem. Chem. Phys. 2013, 15, 6990 – 6997, DOI: doi.org/10.1039/C3CP50918D
[13] M.W. Gaultois, P.T. Barton, C.S. Birkel, L.M. Misch, E.E. Rodriguez, G.D. Stucky, and R. Seshadri. Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7, J. Phys.: Condens. Matter 2013, 25, 186004, DOI: 10.1088/0953-8984/25/18/186004
[12] J.E. Douglas, C.S. Birkel, M.-S. Miao, C.J. Torbet, G.D. Stucky, T.M. Pollock, and R. Seshadri. Enhanced thermoelectric properties of bulk TiNiSn via formation of a TiNi2Sn second phase, Appl. Phys. Lett. 2012, 101, 183902, DOI: doi.org/10.1063/1.4765358
[11] Y. Zhang, T. Day, M.L. Snedaker, H. Wang, S. Kraemer, C.S. Birkel, X. Ji, D. Liu, G.J. Snyder, and G.D. Stucky. A Mesoporous Anisotropic n-Type Bi2Te3 Monolith with Low Thermal Conductivity as an Efficient Thermoelectric Material, Adv. Mater. 2012, 24 (37), 5065 – 5070, DOI: doi.org/10.1002/adma.201201974
[10] C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere*, C.E. Mills*, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, G.J. Snyder, T.M. Pollock, R. Seshadri, and G.D. Stucky. Rapid microwave preparation of thermoelectric TiNiSn and TiCoSb half-Heusler compounds. Chem. Mater. 2012, 24 (13), 2558 – 2565, DOI: doi.org/10.1021/cm3011343
[9] Q.-C. Sun, C.S. Birkel*, J. Cao, W. Tremel, and J.L. Musfeldt. Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles. ACS Nano 2012, 6 (6), 4876 – 4883, DOI: doi.org/10.1021/nn301276q
[8] A. Birkel, L.E. Darago*, A. Morrison, L. Lory*, N.C. George, A.A. Mikhailovsky, C.S. Birkel, and R. Seshadri. Microwave assisted preparation of Eu2+-doped Akermanite Ca2MgSi2O7. Solid State Sci. 2012, 14 (6), 739 – 745, DOI: doi.org/10.1016/j.solidstatesciences.2012.03.014
[7] A. Birkel, K.A. Denault, N.C. George, C.E. Doll*, B. Henry*, A.A. Mikhailovsky, C.S. Birkel, B.-C. Hong, and R. Seshadri. Rapid microwave preparation of Ce3+-substituted garnet phosphors for solid state white lighting. Chem. Mater. 2012, 24 (6), 1198 – 1204, DOI: doi.org/10.1021/cm3000238
[6] Y. Zhang, M.L. Snedaker, C.S. Birkel, M. Syed, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G.D. Stucky. Silver Based Intermetallic Heterostructures in Sb2Te3 Thick Films with Enhanced Thermoelectric Power Factors, Nano Lett. 2012, 12 (2), 1075 – 1080, DOI: doi.org/10.1021/nl204346g
[5] C.S. Birkel, G. Kieslich*, D. Bessas, T. Claudio, R. Branscheid, U. Kolb, M. Panthöfer, R.P. Hermann, and W. Tremel. Wet Chemical Synthesis and a Combined X-ray and Mössbauer Study of the Formation of FeSb2 Nanoparticles, Inorg. Chem. 2011, 50 (22), 11807 – 11812, DOI: doi.org/10.1021/ic201940r
[4] G. Kieslich*, C.S. Birkel, A. Stewart, U. Kolb, and W. Tremel. Solution Synthesis of Nanoparticular Binary Transition Metal Antimonides. Inorg. Chem. 2011, 50 (15), 6938 – 6943, DOI: doi.org/10.1021/ic200074z
[3] C.S. Birkel, T. Claudio, M. Panthöfer, A. Birkel, D. Koll, G. Kieslich*, J. Schmidt, R. Hermann, and W. Tremel. Properties of Spark Plasma Sintered Nanostructured Zn1+xSb, Phys. Status Solidi A 2011, 208 (8), 1913 – 1919, DOI: doi.org/10.1002/pssa.201026665
[2] C.S. Birkel, E. Mugnaioli, T. Gorelik, U. Kolb, M. Panthöfer, and W. Tremel. Solution Synthesis of a New Thermoelectric Zn1+xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography. J. Am. Chem. Soc. 2010, 132 (28), 9881 – 9889, DOI: doi.org/10.1021/ja1035122
[1] K. Page, C.S. Schade*, J. Zhang, P.J. Chupas, K.W. Chapman, T. Proffen, A.K. Cheetham, and R. Seshadri, Preparation and characterization of Pd2Sn nanoparticles. Mater. Res. Bull., 2007, 42 (12), 1969 – 1975, DOI: doi.org/10.1016/j.materresbull.2007.05.010
*Undergraduate student